Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.872
Filtrar
1.
Cancer Gene Ther ; 31(1): 174-185, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37993543

RESUMO

The TGF signaling pathway is a key regulator of cancer progression. In this work, we report for the first time the antitumor activity of TßRII-SE/Fc, a novel peptibody whose targeting domain is comprised of the soluble endogenous isoform of the human TGF-ß type II receptor (TßRII-SE). Overexpression of TßRIISE/Fc reduces in vitro cell proliferation and migration while inducing cell cycle arrest and apoptosis in human colorectal cancer-derived cell lines. Moreover, TßRII-SE/Fc overexpression reduces tumorigenicity in BALB/c nude athymic mice. Our results revealed that TRII-SE/Fc-expressing tumors were significantly reduced in size or were even incapable of developing. We also demonstrated that the novel peptibody has the ability to inhibit the canonical TGF-ß and BMP signaling pathways while identifying SMAD-dependent and independent proteins involved in tumor progression that are modulated by TßRII-SE/Fc. These findings provide insights into the underlying mechanism responsible for the antitumor activity of TßRII-SE/Fc. Although more studies are required to demonstrate the effectiveness and safety of the novel peptibody as a new therapeutic for the treatment of cancer, our initial in vitro and in vivo results in human colorectal tumor-derived cell lines are highly encouraging. Our results may serve as the foundation for further research and development of a novel biopharmaceutical for oncology.


Assuntos
Neoplasias , Receptores de Fatores de Crescimento Transformadores beta , Camundongos , Animais , Humanos , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Xenoenxertos , Lentivirus/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Linhagem Celular
2.
Signal Transduct Target Ther ; 8(1): 456, 2023 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-38105247

RESUMO

Metastasis is the leading cause of cancer-related deaths. Transforming growth factor beta (TGF-ß) signaling drives metastasis and is strongly enhanced during cancer progression. Yet, the use of on-target TGF-ß signaling inhibitors in the treatment of cancer patients remains unsuccessful, highlighting a gap in the understanding of TGF-ß biology that limits the establishment of efficient anti-metastatic therapies. Here, we show that TGF-ß signaling hyperactivation in breast cancer cells is required for metastasis and relies on increased small extracellular vesicle (sEV) secretion. Demonstrating sEV's unique role, TGF-ß signaling levels induced by sEVs exceed the activity of matching concentrations of soluble ligand TGF-ß. Further, genetic disruption of sEV secretion in highly-metastatic breast cancer cells impairs cancer cell aggressiveness by reducing TGF-ß signaling to nearly-normal levels. Otherwise, TGF-ß signaling activity in non-invasive breast cancer cells is inherently low, but can be amplified by sEVs, enabling invasion and metastasis of poorly-metastatic breast cancer cells. Underscoring the translational potential of inhibiting sEV trafficking in advanced breast cancers, treatment with dimethyl amiloride (DMA) decreases sEV secretion, TGF-ß signaling activity, and breast cancer progression in vivo. Targeting both the sEV trafficking and TGF-ß signaling by combining DMA and SB431542 at suboptimal doses potentiated this effect, normalizing the TGF-ß signaling in primary tumors to potently reduce circulating tumor cells, metastasis, and tumor self-seeding. Collectively, this study establishes sEVs as critical elements in TGF-ß biology, demonstrating the feasibility of inhibiting sEV trafficking as a new therapeutic approach to impair metastasis by normalizing TGF-ß signaling levels in breast cancer cells.


Assuntos
Neoplasias da Mama , Vesículas Extracelulares , Humanos , Feminino , Linhagem Celular Tumoral , Fator de Crescimento Transformador beta/metabolismo , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/uso terapêutico , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo
3.
Gynecol Endocrinol ; 39(1): 2276163, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37913790

RESUMO

OBJECTIVE: To investigate whether the Anti-Müllerian Hormone (AMH), an ovarian hormone belonging to the Transforming Growth Factor ß superfamily, may represent a possible candidate for use as a bone anabolic factor. METHODS: We performed in vitro studies on Human Osteoblasts (HOb) to evaluate the expression and the functionality of AMHRII, the AMH receptor type-2, and investigate the effects of exogenous AMH exposure on osteogenic gene expression and osteoblast functions. RESULTS: We reported the first evidence for the expression and functionality of AMHRII in HOb cells, thus suggesting that osteoblasts may represent a specific target for exogenous AMH treatment. Furthermore, the exposure to AMH exerted a stimulatory effect on HOb cells leading to the activation of osteogenic genes, including the upregulation of osteoblastic transcription factors such as RUNX and OSX, along with increased deposition of mineralized nodules. CONCLUSION: Our findings proved interesting clues on the stimulatory effects of AMH on mature osteoblasts expressing its specific receptor, AMHRII. This study may therefore have translation value in opening the perspective that AMH may be an effective candidate to counteract the bone loss in osteoporotic patients by selectively targeting osteoblast with minimal off-target effect.


Assuntos
Hormônio Antimülleriano , Hormônios Peptídicos , Humanos , Hormônio Antimülleriano/farmacologia , Diferenciação Celular , Expressão Gênica , Osteoblastos/metabolismo , Receptores de Peptídeos/genética , Receptores de Peptídeos/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/genética , Fator de Crescimento Transformador beta/genética
4.
Medicine (Baltimore) ; 102(43): e35681, 2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37904396

RESUMO

Gastric carcinoma is a common malignant tumor originating from gastric mucosal epithelium. However, role of DS-cell cycle-dependent protein 1 (DSCC1) and GINS1 in gastric carcinoma remains unclear. The gastric carcinoma datasets GSE79973 and GSE118916 were downloaded from gene expression omnibus. Multiple datasets were merged and batched. Differentially expressed genes (DEGs) were screened and weighted gene co-expression network analysis was performed. Functional enrichment analysis, gene set enrichment analysis and immune infiltration analysis were performed. Construction and analysis of protein-protein interaction Network. Survival analysis and comparative toxicogenomics database were performed. A heat map of gene expression was drawn. Target Scan screen miRNAs regulating DEGs. Two thousand forty-four DEGs were identified. According to gene ontology analysis, in biological process, they were mainly enriched in cell migration, transforming growth factor ß receptor signaling pathway, angiogenesis, and steroid metabolism process. In cellular component, they were mainly enriched in extracellular vesicles, basement membrane, endoplasmic reticulum lumen, and extracellular space. In molecular function, they focused on extracellular matrix structural components, protein binding, platelet-derived growth factor binding, and catalytic activity. In Kyoto encyclopedia of genes and genomes, they were mainly enriched in protein digestion and absorption, metabolic pathways, fatty acid degradation, Glycerophospholipid metabolism, ether lipid metabolism. Gene set enrichment analysis showed that DEGs were mainly enriched in transforming growth factor ß receptor signaling pathway, steroid metabolism process, basement membrane, endoplasmic reticulum lumen, structural components of extracellular matrix, platelet-derived growth factor binding, Glycerophospholipid metabolism, ether lipid metabolism. The results of immune infiltration analysis showed that expression of T cell CD4 memory resting was lower in the samples of gastric cancer. The core genes (TRIP13, CHEK1, DSCC1, GINS1) are protective factors, their expression shows a downward trend with increase of risk score. Comparative toxicogenomics database analysis showed that TRIP13, CHEK1, DSCC1, GINS1 were related to gastric tumors, gastric diseases, tumors, inflammation, and necrosis. DSCC1 and GINS1 are highly expressed in gastric cancer. Higher expression levels of DSCC1 and GINS1, worse the prognosis.


Assuntos
Carcinoma , Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Receptores de Fatores de Crescimento Transformadores beta/genética , Fator de Crescimento Derivado de Plaquetas , Glicerofosfolipídeos , Carcinoma/genética , Esteroides , Éteres , Regulação Neoplásica da Expressão Gênica , Proteínas de Ligação a DNA/genética , ATPases Associadas a Diversas Atividades Celulares/genética , Proteínas de Ciclo Celular/genética
5.
Mol Biol Rep ; 50(12): 9757-9767, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37676431

RESUMO

BACKGROUND: Artial fibrosis has been recognized as a typical pathological change in atrial fibrillation. Although present evidence suggests that microRNA-499-5p (miR-499-5p) plays an important role in the development of atrial fibrosis, the specific mechanism is not fully understood. Therefore, this study attempted to assess the influence of miR-499-5p on atrial fibroblasts and explore the potential molecular mechanism. METHODS: Atrial fibroblasts from sprague dawley rat were respectively transfected with miR-499-5p mimic, miR-499-5p negative control and miR-499-5p inhibitor, atrial fibroblasts without any treatment were also established. Cell counting kit-8 assay and transwell assay were used to detect the proliferation and migration of atrial fibroblasts in each group. Expressions of miR-499-5p, TGF-ß1, smad2, α-SMA, collagen-I and TGFß-R1 in mRNA and protein level were subsequently detected via quantitative real-time polymerase chain reaction and western blot. Furthermore, the prediction of the binding sites of miR-499-5p and TGFß-R1 was performed via the bioinformatics online software TargetScan and verified by dual luciferase reporter. RESULTS: By utilizing miR-499-5p-transfected atrial fibroblasts model, expression of miR-499-5p in the miR-499-5p mimic group was upregulated, while it was downregulated in the miR-499-5p inhibitors group. Upregulated miR-499-5p expression led to to a significant decrease in the proliferative and migratory ability of cultured atrial fibroblasts, while downregulated miR-499-5p expression led to a significant increase in the proliferative and migratory ability of cultured atrial fibroblasts. Additionally, upregulated miR-499-5p expression made a significant rise in TGF-ß1-induced mRNA and protein expression of TGF-ß1, TGFß-R1, smad2, α-SMA and collagen-I in atrial fibroblasts. Furthermore, results from the dual luciferase reporter conformed that miR-499-5p may repress TGFß-R1 by binding the 3'UTR of TGFß-R1 directly. CONCLUSIONS: miR-499-5p is able to inhibit the activation of transforming growth factor ß-induced Smad2 signaling and eventually suppressed the proliferation, migration and invasion of atrial fibroblasts and collagen synthesis by targeting TGFß-R1.


Assuntos
Fibrilação Atrial , MicroRNAs , Receptores de Fatores de Crescimento Transformadores beta , Animais , Ratos , Fibrilação Atrial/genética , Fibrilação Atrial/patologia , Proliferação de Células/genética , Colágeno Tipo I/metabolismo , Fibroblastos/metabolismo , Fibrose , Luciferases/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Ratos Sprague-Dawley , RNA Mensageiro/genética , Transdução de Sinais/genética , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Proteína Smad2/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo
6.
Chem Biol Drug Des ; 102(6): 1421-1434, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37620132

RESUMO

Targeted therapy has attracted more and more attention in cancer treatment in recent years. However, due to the diversity of tumor types and the mutation of target sites on the tumor surface, some existing targets are no longer suitable for tumor therapy. In addition, the long-term administration of a single targeted drug can also lead to drug resistance and attenuate drug potency, so it is important to develop new targets for tumor therapy. The expression of Type III transforming growth factor ß receptor (TGFBR3) is upregulated in colon, breast, and prostate cancer cells, and plays an important role in the occurrence and development of these cancers, so TGFBR3 may be developed as a novel target for tumor therapy, but so far there is no report on this research. In this study, the structure of bone morphogenetic protein 4 (BMP4), one of the ligands of TGFBR3 was analyzed through the docking analysis with TGFBR3 and sequence charge characteristic analysis, and a functional tumor-targeting penetrating peptide T3BP was identified. The results of fluorescent labeling experiments showed that T3BP could target and efficiently enter tumor cells with high expression of TGFBR3, especially A549 cells. When the expression of TGFBR3 on the surface of tumor cells (HeLa) was knocked down by RNA interference, the high delivery efficiency of T3BP was correspondingly reduced by 40%, indicating that the delivery was TGFBR3-dependent. Trichosanthin (TCS, a plant-derived ribosome inactivating protein) fused with T3BP can enhance the inhibitory activity of the fusion protein on A549 cells by more than 200 times that of TCS alone. These results indicated that T3BP, as a novel targeting peptide that can efficiently bind TGFBR3 and be used for targeted therapy of tumors with high expression of TGFBR3. This study enriches the supply of tumor-targeting peptides and provides a new potential application option for the treatment of tumors with high expression of TGFBR3.


Assuntos
Peptídeos Penetradores de Células , Masculino , Humanos , Peptídeos Penetradores de Células/química , Sistemas de Liberação de Medicamentos , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Proteoglicanas/genética , Proteoglicanas/metabolismo , Linhagem Celular Tumoral
7.
Ocul Surf ; 29: 557-565, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37393064

RESUMO

PURPOSE: We hypothesized that Transforming growth factor beta receptor 2 (Tgfbr2) deletion in keratocyte (Tgfbr2kera-cko), the corneal stroma cell, can result in corneal thinning and generate a potential model for Cornea Ectasia (CE). METHODS: Corneal thickness of Tgfbr2kera-cko and Tgfbr2Ctrl was examined with Optical Coherence Tomography (OCT) at post-natal (P) days 42 and 70, respectively. Histological H&E staining, transmission electron micrograph (TEM), and immunofluorescence staining (IFS) were harnessed to examine corneal cell morphology, proliferation, differentiation, and collagen fibrils. RESULTS: Slit-Lamp revealed that corneas were transparent in both Tgfbr2kera-cko and Tgfbr2Ctrl, however, Tgfbr2kera-cko cornea was 33.5% and 42.9% thinner as compared with those of Tgfbr2Ctrl at P42 and P70, respectively. H&E and semithin section staining with toluidine blue-O confirmed that Tgfbr2kera-cko cornea has a thinner stroma. In contrast, the epithelium in Tgfbr2kera-cko was substantially thicker. The cell proliferation marker Ki67 expression level increased ∼9% in Tgfbr2kera-cko corneal epithelium as compared with that in Tgfbr2Ctrl, however, the Krt14 and Krt12 expression pattern was not obviously changed in Tgfbr2kera-cko corneal epithelium. It was noticed that Col1a1 expression was substantially reduced in Tgfbr2kera-cko as compared with that in Tgfbr2Ctrl. TEM showed that keratocytes were unhealthy and stromal collagen fibril density was significantly reduced in Tgfbr2kera-cko as compared with that in Tgfbr2Ctrl cornea. Moreover, mechanical eye-rubbing on Tgfbr2kera-cko resulted in corneal hydrops and edema. CONCLUSION: Tgfbr2 in keratocytes is indispensable for the corneal stroma at postnatal homeostasis. The cornea phenotype manifested in these Tgfbr2kera-cko mice resembles corneal ectasia disease in humans.


Assuntos
Córnea , Doenças da Córnea , Receptor do Fator de Crescimento Transformador beta Tipo II , Animais , Humanos , Camundongos , Colágeno , Córnea/patologia , Doenças da Córnea/patologia , Substância Própria , Dilatação Patológica/metabolismo , Dilatação Patológica/patologia , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo II/genética , Receptor do Fator de Crescimento Transformador beta Tipo II/metabolismo
8.
Adv Exp Med Biol ; 1423: 187-191, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37525043

RESUMO

Craniofacial development is a complex process involving several signaling pathways, including the one regulated by the TGF-beta (TGF-ß) superfamily of growth factors. Isoforms of TGF-ß play a vital part in embryonic development, notably in craniofacial patterning. Consequently, pathogenic variants in their coding genes may result in a variety of orofacial and craniofacial malformations. Here, we review the impact of genetic variability of TGF-ß signaling biomarkers in major disorders, including palatal and lip clefts, dental anomalies, and craniofacial syndromes, such as the Loeys-Dietz syndrome (LDS) and Camurati-Engelmann disease. Cleft lip and cleft palate are associated with missense mutations in the TGFB1 and TGFB3 genes, while mutations in the LTBP3 gene encoding TGF-ß binding protein 3 may cause selective tooth agenesis. Oligodontia may also be caused by TGFB1-inactivating mutations and/or by variations in the GREM2 gene, which disrupt the activity of gremlin 2, a TGF-ß/bone morphogenetic protein (BMP4) signaling antagonist. CED may be caused by mutations in the TGFB1 gene, while the TGF-ß-related genetic background of LDS consists mostly of TGFBR1 and TGFBR2 mutations, which may also impact the above syndromes' vascular manifestations. The potential utility of the TGF-ß signaling pathway factors as biomarkers that correlate genetics with clinical outcome of craniofacial malformations is discussed.


Assuntos
Anormalidades Craniofaciais , Síndrome de Loeys-Dietz , Humanos , Biomarcadores , Anormalidades Craniofaciais/genética , Síndrome de Loeys-Dietz/genética , Síndrome de Loeys-Dietz/patologia , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Transdução de Sinais/genética , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
9.
Biochem Biophys Res Commun ; 676: 58-65, 2023 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-37487438

RESUMO

Cullin 4B (CUL4B), which acts as a scaffold protein in CUL4B-RING ubiquitin ligase complexes (CRL4B), is frequently overexpressed in cancer and represses tumor suppressors through epigenetic mechanisms. However, the expression and function of CUL4B in esophageal squamous cell carcinoma (ESCC) have not been well illustrated. In this study, we show that upregulation of CUL4B in ESCC cells enhances proliferation, invasion and cisplatin (CDDP)-resistance, while knockdown of CUL4B significantly represses the malignant activities. Mechanistically, we demonstrate that CUL4B promotes proliferation and migration of ESCC cells through inhibiting expression of transforming growth factor beta receptor III (TGFBR3). CRL4B complex binds to the promoter of TGFBR3, and represses its transcription by catalyzing monoubiquitination at H2AK119 and coordinating with PRC2 and HDAC complexes. Taken together, our findings establish a critical role for the CUL4B/TGFBR3 axis in the regulation of ESCC malignancy.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/genética , Neoplasias Esofágicas/genética , Proteínas Culina/genética , Proteínas Culina/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Fenótipo , Proliferação de Células/fisiologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética
10.
World J Gastroenterol ; 29(20): 3103-3118, 2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37346154

RESUMO

BACKGROUND: The transforming growth factor ß (TGFß) signaling pathway plays a crucial role in the development of liver fibrosis by activating TGFß type II receptor (TGFßR2), followed by the recruitment of TGFßR1 finally triggering downstream signaling pathway. AIM: To find drugs targeting TGFßR2 that inhibit TGFßR1/TGFßR2 complex formation, theoretically inhibit TGFß signaling pathway, and thereby ameliorate liver fibrosis. METHODS: Food and Drug Administration-approved drugs were screened for binding affinity with TGFßR2 by virtual molecular docking. We identified 6 candidates and further explored their potential by Cell Counting Kit-8 (CCK-8) cell cytotoxic experiment to validate toxicity and titrated the best cellular working concentrations. Next, we further demonstrated the detailed molecular working mechanisms using mutagenesis analysis. Finally, we used a mouse model to investigate its potential anti-liver fibrosis effect. RESULTS: We identified 6 drug candidates. Among these 6 drugs, dihydroergotamine (DHE) shows great ability in reducing fibrotic gene expressions such as collagen, p-SMAD3, and α-SMA in TGFß induced cellular model of liver fibrosis in LX-2 cells. Furthermore, we demonstrated that DHE binds to TGFßR2. Moreover, mutation of Leu27, Phe30, Thr51, Ser52, Ile53, and Glu55 of TGFßR2 disrupted the binding of TGFßR2 with DHE. In addition, DHE significantly improved liver fibrosis, as evidenced by Masson's trichrome staining of liver sections. This is further supported by the width and the velocity of the portal vein, and serum markers of liver function. In line with those observations, DHE also decreased macrophages infiltration and extracellular matrix deposition in the liver. CONCLUSION: DHE alleviates liver fibrosis by binding to TGFßR2 thereby suppressing TGFß signaling pathway. We show here that as far as drug repurposing, DHE has great potential to treat liver fibrosis.


Assuntos
Di-Hidroergotamina , Cirrose Hepática , Camundongos , Animais , Receptor do Fator de Crescimento Transformador beta Tipo II , Di-Hidroergotamina/efeitos adversos , Simulação de Acoplamento Molecular , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/prevenção & controle , Cirrose Hepática/induzido quimicamente , Fibrose , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1 , Receptores de Fatores de Crescimento Transformadores beta/genética
11.
Sci Signal ; 16(790): eadf1947, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37339182

RESUMO

Transforming growth factor-ß (TGF-ß) signaling is a critical driver of epithelial-to-mesenchymal transition (EMT) and cancer progression. In SMAD-dependent TGF-ß signaling, activation of the TGF-ß receptor complex stimulates the phosphorylation of the intracellular receptor-associated SMADs (SMAD2 and SMAD3), which translocate to the nucleus to promote target gene expression. SMAD7 inhibits signaling through the pathway by promoting the polyubiquitination of the TGF-ß type I receptor (TßRI). We identified an unannotated nuclear long noncoding RNA (lncRNA) that we designated LETS1 (lncRNA enforcing TGF-ß signaling 1) that was not only increased but also perpetuated by TGF-ß signaling. Loss of LETS1 attenuated TGF-ß-induced EMT and migration in breast and lung cancer cells in vitro and extravasation of the cells in a zebrafish xenograft model. LETS1 potentiated TGF-ß-SMAD signaling by stabilizing cell surface TßRI, thereby forming a positive feedback loop. Specifically, LETS1 inhibited TßRI polyubiquitination by binding to nuclear factor of activated T cells (NFAT5) and inducing the expression of the gene encoding the orphan nuclear receptor 4A1 (NR4A1), a component of a destruction complex for SMAD7. Overall, our findings characterize LETS1 as an EMT-promoting lncRNA that potentiates signaling through TGF-ß receptor complexes.


Assuntos
Neoplasias , RNA Longo não Codificante , Animais , Humanos , Fator de Crescimento Transformador beta/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Peixe-Zebra/genética , Peixe-Zebra/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/genética , Movimento Celular/genética
12.
Mol Cell Biol ; 43(5): 223-240, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37154023

RESUMO

Glutamyl-prolyl-tRNA synthetase 1 (EPRS1) is known to associated with fibrosis through its catalytic activity to produce prolyl-tRNA. Although its catalytic inhibitor halofuginone (HF) has been known to inhibit the TGF-ß pathway as well as to reduce prolyl-tRNA production for the control of fibrosis, the underlying mechanism how EPRS1 regulates the TGF-ß pathway was not fully understood. Here, we show a noncatalytic function of EPRS1 in controlling the TGF-ß pathway and hepatic stellate cell activation via its interaction with TGF-ß receptor I (TßRI). Upon stimulation with TGF-ß, EPRS1 is phosphorylated by TGF-ß-activated kinase 1 (TAK1), leading to its dissociation from the multi-tRNA synthetase complex and subsequent binding with TßRI. This interaction increases the association of TßRI with SMAD2/3 while decreases that of TßRI with SMAD7. Accordingly, EPRS1 stabilizes TßRI by preventing the ubiquitin-mediated degradation of TßRI. HF disrupts the interaction between EPRS1 and TßRI, and reduces TßRI protein levels, leading to inhibition of the TGF-ß pathway. In conclusion, this work suggests the novel function of EPRS1 involved in the development of fibrosis by regulating the TGF-ß pathway and the antifibrotic effects of HF by controlling both of EPRS1 functions.


Assuntos
Células Estreladas do Fígado , Receptores de Fatores de Crescimento Transformadores beta , Humanos , Células Estreladas do Fígado/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fibrose , Transdução de Sinais/fisiologia
13.
J Am Heart Assoc ; 12(8): e028625, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37042257

RESUMO

Background Differences in the clinical course of heritable thoracic aortic disease based on the disease-causing gene have not been fully evaluated. To clarify the clinical relevance of causative genes in heritable thoracic aortic disease, we assessed the clinical course of patients categorized based on genetic diagnosis. Methods and Results We investigated cardiovascular events and mortality in 518 genetically diagnosed patients in 4 groups: Group 1, FBN1 (n=344); Group 2, TGFBR1, TGFBR2, SMAD3, or TGFB2 (n=74); Group 3, COL3A1 (n=60); and Group 4, ACTA2 or MYH11 (n=40). The median age at the first cardiovascular event ranged from 30.0 to 35.5 years (P=0.36). Patients with gene variants related to transforming growth factor-ß signaling had a significantly higher rate of subsequent events than those with FBN1 variants (adjusted hazard ratio, 2.33 [95% CI, 1.60-3.38]; P<0.001). Regarding the incidence of aortic dissection, there were no significant differences among the 4 groups in male patients (36.3%, 34.3%, 21.4%, and 54.2%, respectively; P=0.06). Female patients with COL3A1 variants had a significantly lower incidence than female patients in the other 3 groups (34.2%, 59.0%, 3.1%, and 43.8%, respectively; P<0.001). Conclusions Gene variants related to transforming growth factor-ß signaling are associated with a higher incidence of subsequent cardiovascular events than FBN1 variants. COL3A1 variants might be related to a lower incidence of aortic dissection than other gene variants in women only. Identifying the genetic background of patients with heritable thoracic aortic disease is important for determining appropriate treatment.


Assuntos
Aneurisma da Aorta Torácica , Dissecção Aórtica , Humanos , Masculino , Feminino , Adulto , Receptores de Fatores de Crescimento Transformadores beta/genética , Dissecção Aórtica/diagnóstico , Dissecção Aórtica/genética , Transdução de Sinais/genética , Fatores de Crescimento Transformadores/genética , Progressão da Doença , Aneurisma da Aorta Torácica/diagnóstico , Aneurisma da Aorta Torácica/genética , Mutação
14.
JCI Insight ; 8(9)2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-36976645

RESUMO

Although the expression of Mex3 RNA-binding family member B (MEX3B) is upregulated in human nasal epithelial cells (HNECs) predominately in the eosinophilic chronic rhinosinusitis (CRS) with nasal polyps (CRSwNP) subtype, its functions as an RNA binding protein in airway epithelial cells remain unknown. Here, we revealed the role of MEX3B based on different subtypes of CRS and demonstrated that MEX3B decreased the TGF-ß receptor III (TGFBR3) mRNA level by binding to its 3' UTR and reducing its stability in HNECs. TGF-ßR3 was found to be a TGF-ß2-specific coreceptor in HNECs. Knocking down or overexpressing MEX3B promoted or inhibited TGF-ß2-induced phosphorylation of SMAD2 in HNECs, respectively. TGF-ßR3 and phosphorylated SMAD2 levels were downregulated in CRSwNP compared with controls and CRS without nasal polyps with a more prominent downregulation in the eosinophilic CRSwNP. TGF-ß2 promoted collagen production in HNECs. Collagen abundance decreased and edema scores increased in CRSwNP compared with control, again more prominently in the eosinophilic type. Collagen expression in eosinophilic CRSwNP was negatively correlated with MEX3B but positively correlated with TGF-ßR3. These results suggest that MEX3B inhibits tissue fibrosis in eosinophilic CRSwNP by downregulating epithelial cell TGFBR3 expression; consequently, MEX3B might be a valuable therapeutic target against eosinophilic CRSwNP.


Assuntos
Pólipos Nasais , Rinite , Sinusite , Humanos , Rinite/complicações , Rinite/metabolismo , Pólipos Nasais/genética , Pólipos Nasais/metabolismo , Fator de Crescimento Transformador beta2/metabolismo , Sinusite/genética , Sinusite/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Células Epiteliais/metabolismo , Proteínas de Ligação a RNA/genética
15.
Front Immunol ; 14: 1088039, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36855628

RESUMO

The transforming growth factor receptor III (TßRIII) is commonly recognized as a co-receptor that promotes the binding of TGFß family ligands to type I and type II receptors. Within the immune system, TßRIII regulates T cell development in the thymus and is differentially expressed through activation; however, its function in mature T cells is unclear. To begin addressing this question, we developed a conditional knock-out mouse with restricted TßRIII deletion in mature T cells, necessary because genomic deletion of TßRIII results in perinatal mortality. We determined that TßRIII null mice developed more severe autoimmune central nervous neuroinflammatory disease after immunization with myelin oligodendrocyte peptide (MOG35-55) than wild-type littermates. The increase in disease severity in TßRIII null mice was associated with expanded numbers of CNS infiltrating IFNγ+ CD4+ T cells and cells that co-express both IFNγ and IL-17 (IFNγ+/IL-17+), but not IL-17 alone expressing CD4 T cells compared to Tgfbr3fl/fl wild-type controls. This led us to speculate that TßRIII may be involved in regulating conversion of encephalitogenic Th17 to Th1. To directly address this, we generated encephalitogenic Th17 and Th1 cells from wild type and TßRIII null mice for passive transfer of EAE into naïve mice. Remarkably, Th17 encephalitogenic T cells from TßRIII null induced EAE of much greater severity and earlier in onset than those from wild-type mice. The severity of EAE induced by encephalitogenic wild-type and Tgfbr3fl/fl.dLcKCre Th1 cells were similar. Moreover, in vitro restimulation of in vivo primed Tgfbr3fl/fl.dLcKCre T cells, under Th17 but not Th1 polarizing conditions, resulted in a significant increase of IFNγ+ T cells. Altogether, our data indicate that TßRIII is a coreceptor that functions as a key checkpoint in controlling the pathogenicity of autoreactive T cells in neuroinflammation probably through regulating plasticity of Th17 T cells into pathogenic Th1 cells. Importantly, this is the first demonstration that TßRIII has an intrinsic role in T cells.


Assuntos
Encefalite , Receptores de Fatores de Crescimento Transformadores beta , Células Th17 , Animais , Feminino , Camundongos , Gravidez , Fosforilação , Receptores de Fatores de Crescimento Transformadores beta/genética
16.
Mol Biol Rep ; 50(5): 4207-4216, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36899279

RESUMO

BACKGROUND: Melanoma is an aggressive type of cancer that can metastasize to numerous other organs. TGFß is one of the key signaling pathways in melanoma progression. Previous studies on various types of cancer have shown that both: polyphenols and a static magnetic field (SMF) can be potential chemopreventive/therapeutic agents. Therefore, the aim of the study was to evaluate the effect of a SMF and selected polyphenols on the transcriptional activity of TGFß genes in melanoma cells. METHODS AND RESULTS: Experiments were performed on the C32 cell line treated with caffeic or chlorogenic acids, and with simultaneous exposure to a moderate-strength SMF. The RT-qPCR method was used to determine the mRNA level of genes encoding the TGFß isoforms and their receptors. The concentration of the TGFß1 and TGFß2 proteins were also measured in the cell culture supernates. The first response of C32 melanoma cells to both factors is the reduction of TGFß levels. Then, mRNA level of these molecules returned to values close to pre-treatment level by the end of experiment. CONCLUSION: Our study results demonstrate the potential of polyphenols and a moderate-strength SMF to support cancer therapy by altering TGFß expression, which is a very promising topic for the diagnosis and treatment of melanoma.


Assuntos
Melanoma Amelanótico , Neoplasias Cutâneas , Humanos , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta1/genética , Neoplasias Cutâneas/metabolismo , RNA Mensageiro/metabolismo , Isoformas de Proteínas/genética , Receptores de Fatores de Crescimento Transformadores beta/genética
17.
Cell Mol Life Sci ; 80(2): 43, 2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36646950

RESUMO

Ubiquitin-specific protease (USP)19 is a deubiquitinating enzyme that regulates the stability and function of multiple proteins, thereby controlling various biological responses. The alternative splicing of USP19 results in the expression of two major encoded variants that are localized to the endoplasmic reticulum (ER) (USP19-ER) and cytoplasm (USP19-CY). The importance of alternative splicing for the function of USP19 remains unclear. Here, we demonstrated that USP19-CY promotes TGF-ß signaling by directly interacting with TGF-ß type I receptor (TßRI) and protecting it from degradation at the plasma membrane. In contrast, USP19-ER binds to and sequesters TßRI in the ER. By decreasing cell surface TßRI levels, USP19-ER inhibits TGF-ß/SMAD signaling in a deubiquitination-independent manner. Moreover, USP19-ER inhibits TGF-ß-induced epithelial-mesenchymal transition (EMT), whereas USP19-CY enhances EMT, as well as the migration and extravasation of breast cancer cells. Furthermore, USP19-CY expression is correlated with poor prognosis and is higher in breast cancer tissues than in adjacent normal tissues. Notably, the splicing modulator herboxidiene inhibits USP19-CY, increases USP19-ER expression and suppresses breast cancer cell migration. Targeting USP19 splicing or its deubiquitinating activity may have potential therapeutic effects on breast cancer.


Assuntos
Neoplasias da Mama , Fator de Crescimento Transformador beta , Humanos , Feminino , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Transição Epitelial-Mesenquimal/genética , Neoplasias da Mama/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Membrana Celular/metabolismo , Movimento Celular/genética , Linhagem Celular Tumoral , Endopeptidases/metabolismo
18.
Sci Immunol ; 8(79): eabp9940, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36608150

RESUMO

Allergic diseases are a global health challenge. Individuals harboring loss-of-function variants in transforming growth factor-ß receptor (TGFßR) genes have an increased prevalence of allergic disorders, including eosinophilic esophagitis. Allergic diseases typically localize to mucosal barriers, implicating epithelial dysfunction as a cardinal feature of allergic disease. Here, we describe an essential role for TGFß in the control of tissue-specific immune homeostasis that provides mechanistic insight into these clinical associations. Mice expressing a TGFßR1 loss-of-function variant identified in atopic patients spontaneously develop disease that clinically, immunologically, histologically, and transcriptionally recapitulates eosinophilic esophagitis. In vivo and in vitro, TGFßR1 variant-expressing epithelial cells are hyperproliferative, fail to differentiate properly, and overexpress innate proinflammatory mediators, which persist in the absence of lymphocytes or external allergens. Together, our results support the concept that TGFß plays a fundamental, nonredundant, epithelial cell-intrinsic role in controlling tissue-specific allergic inflammation that is independent of its role in adaptive immunity.


Assuntos
Esofagite Eosinofílica , Hipersensibilidade Imediata , Animais , Camundongos , Esofagite Eosinofílica/genética , Receptores de Fatores de Crescimento Transformadores beta/genética , Inflamação
19.
Am J Med Genet A ; 191(3): 786-793, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36584339

RESUMO

Heterozygous missense variants in TGFBR1, encoding one subunit of the transforming growth factor-beta receptor, are a well-established cause of Loeys-Dietz syndrome (LDS)-an autosomal dominant disorder with variable phenotypic expression. Patients with LDS have compromised connective tissues that can result in life-threatening arterial aneurysms, craniosynostosis, characteristic craniofacial and skeletal anomalies, skin translucency, and abnormal wound healing. We report a full sibship with a biallelic type of TGFBR1-related disease. Each born at 38 weeks had aortic root dilation, congenital diaphragmatic hernia (CDH), skin translucency, and profound joint laxity at birth. Both had progressive dilation of the aorta and recurrence of a diaphragmatic defect after plication early in infancy. Patient 1 died at 66 days of age and Patient 2 is alive at 4 years and 4 months of age with multiple morbidities including cystic lung disease complicated by recurrent pneumothoraces and ventilator dependence, craniosynostosis, cervical spine instability, progressive dilation of the aorta, worsening pectus excavatum, large lateral abdominal wall hernia, and diffuse aortic ectasia. Fibroblasts cultured from Patient 2 showed decreased TGF-ß responsiveness when compared to control fibroblasts, consistent with previous observations in cells from individuals with autosomal dominant LDS. Whole genome copy number evaluation and sequencing for both patients including their parents as reference revealed compound heterozygous variants of uncertain clinical significance in exon 2 of TGFBR1 (c.239G>A; p.Arg80Gln paternal and c.313C>G; p.His105Asp maternal) in both siblings in trans. Each parent with their respective variant has no apparent medical issues and specifically no LDS characteristics. Neither of these variants have been previously reported. Thousands of patients have been diagnosed with LDS-an established autosomal dominant disease. These siblings represent the first reports of biallelic TGFBR1-related LDS and expand the differential diagnosis of CDH.


Assuntos
Doenças do Tecido Conjuntivo , Craniossinostoses , Síndrome de Loeys-Dietz , Recém-Nascido , Humanos , Receptor do Fator de Crescimento Transformador beta Tipo I/genética , Síndrome de Loeys-Dietz/diagnóstico , Síndrome de Loeys-Dietz/genética , Irmãos , Receptores de Fatores de Crescimento Transformadores beta/genética , Dilatação Patológica , Craniossinostoses/diagnóstico , Craniossinostoses/genética
20.
Adv Exp Med Biol ; 1395: 269-274, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36527648

RESUMO

Co-enzyme nicotinamide adenine dinucleotide NAD(H) regulates hundreds of biochemical reactions within the cell. We previously reported that NAD(H) redox status may have prognostic value for predicting breast cancer metastasis. However, the mechanisms of NAD(H) involvement in metastasis remain elusive. Given the important roles of TGFß signalling in metastatic processes, such as promoting the epithelial-to-mesenchymal transition, we aimed to investigate the involvement of the mitochondrial NAD(H) redox status in TGFß receptor signalling. Here we present the initial evidence that NAD(H) redox status is responsive to TGFß receptor signalling in triple-negative breast cancer cells in culture. The mitochondrial NAD(H) redox status was determined by the optical redox imaging (ORI) technique. Cultured HCC1806 (less aggressive) and MDA-MB-231 (more aggressive) cells were subjected to ORI after treatment with exogenous TGFß1 or LY2109761, which stimulates or inhibits TGFß receptor signalling, respectively. Cell migration was determined with the transwell migration assay. Global averaging quantification of the ORI images showed that 1) TGFß1 stimulation resulted in differential responses between HCC1806 and MDA-MB-231 lines, with HCC1806 cells having a significant change in the mitochondrial redox status, corresponding to a larger increase in cell migration; 2) HCC1806 cells acutely treated with LY2109761 yielded immediate increases in ORI signals. These preliminary data are the first evidence that suggests the existence of a cell line-dependent shift of the mitochondrial NAD(H) redox status in the TGFß receptor signalling induced migratory process of breast cancer cells. Further research should be conducted to confirm these results as improved understanding of the underlying mechanisms of metastatic process may contribute to the identification of prognostic biomarkers and therapeutic targets.


Assuntos
Mitocôndrias , NAD , Receptores de Fatores de Crescimento Transformadores beta , Neoplasias de Mama Triplo Negativas , Feminino , Humanos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Transição Epitelial-Mesenquimal/fisiologia , NAD/genética , NAD/metabolismo , Oxirredução , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Imagem Óptica , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...